Coevolutionary Particle Swarm Optimization With Bottleneck Objective Learning Strategy for Many-Objective Optimization
نویسندگان
چکیده
منابع مشابه
Using Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems: An Empirical Study
Pareto based Multi-Objective Evolutionary Algorithms face several problems when dealing with a large number of objectives. In this situation, almost all solutions become nondominated and there is no pressure towards the Pareto Front. The use of Particle Swarm Optimization algorithm (PSO) in multi-objective problems grew in recent years. The PSO has been found very efficient in solve Multi-Objec...
متن کاملR2-Based Multi/Many-Objective Particle Swarm Optimization
We propose to couple the R2 performance measure and Particle Swarm Optimization in order to handle multi/many-objective problems. Our proposal shows that through a well-designed interaction process we could maintain the metaheuristic almost inalterable and through the R2 performance measure we did not use neither an external archive nor Pareto dominance to guide the search. The proposed approac...
متن کاملMany-Objective Particle Swarm Optimization by Gradual Leader Selection
Many-objective optimization refers to multi-objective optimization problems with a number of objectives considerably larger than two or three. This papers contributes to the use of Particle Swarm Optimization (PSO) for the handling of such many-objective optimization problems. Multi-objective PSO approaches typically rely on the employment of a so-called set of leaders that generalizes the glob...
متن کاملDynamic-objective particle swarm optimization for constrained optimization problems
This paper firstly presents a novel constraint-handling technique , called dynamicobjective method (DOM), based on the search mechanism of the particles of particle swarm optimization (PSO). DOM converts the constrained optimization problem into a bi-objective optimization problem, and then enables each particle to dynamically adjust its objectives according to its current position in the searc...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2019
ISSN: 1089-778X,1089-778X,1941-0026
DOI: 10.1109/tevc.2018.2875430